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1 Introduction

On the bottom of a furnace clay model of the Karanovo culture (5th mil-
lennium BC) is a kind of table, which is addressed by the researchers as a
calendar [1].

In the first article on this object [2] we examined the preparation of this
table, without going into the possible content. It was found that the table,
which contains only framing lines and entries of longitudinal and horizontal
lines, but no characters, was engraved in a single operation prior to the ce-
ramic firing.

In this document, a substantial consideration should now be based on the
quantitatively observable facts.
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2 Appearance of the Table

Figure 1: The Karanovo table, c© Lessing Archiv.

We consider the table (Figure 1) in the reconstructed abstract form (Fig-
ure 2), with the orientation first of all left out, even if the history of manu-
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facture (see [2]) suggests the orientation shown here. Quantitative properties
are invariant to rotation and reflection.

Figure 2: The Karanovo table, abstracted.
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3 First Observations and Assumptions

1. Due to the speedy manufacturing process, the content or appearance
of the table may have already been established prior to scoring into the
bottom of the oven model.

2. The contents of the table seem to have been so important that it was
worth keeping on a durable material like ceramics.

3. The contents of the table (the longitudinal and horizontal lines of dif-
ferent lengths within the frame lines) do not correspond to characters
of the Donauschrift. Therefore, it may be numbers or counts in the
context of the fields.

4. The (restored) table consists of 6 columns and 10 rows, therefore 60
fields (Figure 3). However only 3 columns show labeled fields. The
empty columns only appear to be separations, with the last column
boundary also being added last and this void column being narrower
than the others. There are thus 30 fields that have any meaning, but
3 fields of them are empty. Only 27 fields really contain entries.

Figure 3: Partitions of the Karanovo table.
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What could this table be about? The following uses might come to mind:

• Bread issue to clans?

• Census?

• Abacus?

• Cadastre?

• Music Score?

• Dance steps for ritual dances?

• Menstrual cycles?

• Day count / -calender?

• Lunar calendar?

• Others?

The number of 27 fields with entries let one actually think of a calendar,
and also a lunar calendar, because the so-called sidereal month, i.e. the time
of an inertial moon orbit, or the time until the moon passes the same fixed
star, is 27.3217 days.

This would mean, however, that at the time of manufacturing of the table
already a considerable empirical knowledge about astronomical movements
and a long-term data collection was available. Were there for the early farm-
ers of the Danube civilization to which the Karanovo culture belonged (the
predecessors of the band ceramists) a necessity and use of such knowledge?

4 Timing in Agrarian Cultures

The people of Karanovo culture were settled farmers. For agriculture is time
management, and therefore timekeeping, an important aid. But how does
one measure time without instruments?

Timing consists of counting periodic events. For observers without in-
struments, counting is the only remedy. The (apparent) solar course (actu-
ally the synodic rotation of the earth around its axis) determines the cyclic
change day and night. This cycle defines the smallest unit of time that
can be counted precisely without any equipment, the (whole) day. But you
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can also count the light and dark cycles: a day thus consists of two half-days.

The next cycle that is easy to observe is the change of the moon phases.
The days from full moon to full moon can be easily counted, better yet, be-
cause to see more accurately, from a quarter moon to the same quarter in
the next cycle. This results in the Synodic Month, also called Lunation of
about 29.52986111 days.

In higher latitudes, seasonal cycles (summer / winter) are noticeable, but
they are too blurred to be fixed by counting days. The obvious repetition of
year-round changing sunrise and sunset points are also not securely detected
without fixed direction finder (palisade or stone circles). But the long-term
unit year can be defined in the long term. The duration of a year in days can
also be determined by long-term data collection. A so-called Tropical Year
is defined as 365.24219052 days, so it has about 365.2422 days, as reflected
in the switching rules of our calendar.

An attentive observer of the star sky will notice more phenomena: he will
see the daily motion of the moon in front of the fixed star background. In
addition, he will find that during several lunations the Moon passes the same
stellar constellations fairly regularly. This period, the inertial circulation of
the moon, is called the sidereal month and is noticeably shorter than the
synodic month, namely 27.321661 days. Longer-term observation yields this
number.

Of the other astronomical phenomena that are easy to observe with the
naked eye, very few are useful for timekeeping without aids: the fixed starry
sky, which turns slowly in the annual course, is badly suited for measuring
time without a fixed reference point, but underpins the concept of the year
as time unit. The visible planets may have appeared unsuitable for timing
due to their irregular motion.

Finally, there are the inexplicable and perhaps even terrifying lunar eclipses,
which are apparently sporadically easy to observe during the full moon.
This calls for explanatory tests and predictions outright. Incidentally, lu-
nar eclipses are much easier to observe than solar eclipses, since only the
total solar eclipses, which are very rare in one place, can be perceived by the
naked eye.
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5 Quantitative Properties of the Table

Figure 4: Entries in the Karanovo table: vertical (left), horizontal lines
(right).

The table consists of 6 columns and 10 rows. But only 3 columns (A, C,
E) show entries in vertical and horizontal, long and short lines. The fields
A3, A10 and C2 are empty, so that only 27 fields are really labeled.

We distinguish vertical lines and horizontal lines (Figure 4). There are
different lengths of horizontal lines that cross the vertical lines or are in the
spaces or are connected to a long line, but this should be disregarded for the
time being.

The counting gathered into a matrix:
1. component: vertical lines
2. component: horizontal lines
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Row \ column A C E

1 (0,0) 4,0 2,0

2 2,0 3,0 3,0

3 2,0 4,10 3,0

4 2,0 3,3 3,0

5 2,0 3,3 4,8

6 2,0 3,7 4,6

7 2,0 3,12 4,8

8 2,0 3,10 4,5

9 (0,0) (0,0) 4,3

10 3,0 3,10 5,0

First to the positions of the empty fields. The empty fields appear (de-
pending on the method of counting) in the following places:

Counted line by line (forward and backward):
(A1=1, C1=2, E1=3, A2=4, etc.): 1, 25, 26.
(E1=1, C1=2, A1=3, E2=4, etc.): 3, 26, 27.
(A10=1, C10=2, E10=3, A9=4, etc.): 4, 5, 28.
(E10=1, C10=2, A10=3, E9=4, etc.): 5, 6, 30.

Counted alternatingly (from front and back):
(A1=1, C1=2, E1=3, E2=4, C2=5, etc.): 1, 25, 26.
(E1=1, C1=2, A1=3, A2=4, C2=5, etc.): 3, 26, 27.
(A10=1, C10=2, E10=3, E9=4, C9=5, etc.): 5, 6, 30.
(E10=1, C10=2, A10=3, A9=4, C9=5, etc.): 4, 5, 28.

So there are only four different ways of localizing the empty fields here.

Counted in columns:
(A1=1, A2=2 ... A10=10, C1=11, C2=12, etc.): 1, 9, 19.
(E1=1, E2=2 ... E10=10, C1=11, C2=12, etc.): 19, 21, 29.
(A10=1, A9=2 ... A1=10, C10=11, C9=12, etc.): 2, 10, 12.
(E10=1, E9=2 ... E1=10, C10=11, C9=12, etc.): 12, 22, 30.

Counted alternatingly (from front and back):
(A1=1, A2=2 ... A10=10, C10=11, C9=12, etc.): 1, 9, 12.
(E1=1, E2=2 ... E10=10, C10=11, C9=12, etc.): 12, 21, 29.
(A10=1, A9=2 ... A1=10, C1=11, C2=12, etc.): 2, 10, 19.
(E10=1, E9=2 ... E1=10, C1=11, C2=12, etc.): 19, 22, 30.
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So only the following fields of the table are empty, in each case only in
the specified combination:

1,2,3,4,5,6,9,10,12,19,21,22,25,26,27,28,29,30, a total of 18 possible posi-
tions. It lacks 7,8,11,13,14,15,16,17,18,20,23,24, i.e. twelve fields are ex-
cluded. Interestingly, there are only in 12 fields horizontal lines as entries.

6 Number Crunching

The 27 labeled fields in the table suggest that it might be a (sidereal) lunar
calendar. We can play around with the numbers to see if there are known
numbers or numerical ratios that correlate with astronomical or palaeo-
astronomical data.

Let’s look at our matrix and construct component-by-column and row
sums::

Row \ Column A C E Row total

1 0,0 4, 0 2,0 6, 0

2 2,0 3, 0 3,0 8, 0

3 2,0 4,10 3,0 9, 10

4 2,0 3, 3 3,0 8, 3

5 2,0 3, 3 4,8 9, 11

6 2,0 3, 7 4,6 9, 13

7 2,0 3,12 4,8 9, 20

8 2,0 3,10 4,5 9, 15

9 0,0 0, 0 4,3 4, 3

10 3,0 3,10 5,0 11,10

Column sum 17,0 29,55 36,30 82,85

Let’s use the numbers to discover known numerical ratios under the as-
sumption of a lunar calendar. First some facts:
A sidereal month has about 27.321661 days.
A synodic month (Lunation) has about 29.52986111 days.

We must not expect that the people of the Karanovoculture carried out
great bills, nor did they control the fractional bill like the ancient Egyptians,
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or even use a decade-decimal system. Nonetheless, we use our modern way
of computing to find implicit relationships that implicitly result from simply
counting astronomical or other physical phenomena within a cyclic system.

So we form relationships:

27.321661

29.52986111
= 0.9252214...

An approximation is

27.3

29.5
= 0.9254237...

A somewhat rough approximation provides

27.5

29.5
= 0.9322033...

Roughly calculated, the result is still around 0.93:

27

29
= 0.931034482...

Counted in half-days, 27.5 days correspond to 55 half-days and 29.5 days
to 59 half-days.

27.5

29.5
=

275

295
=

55

59
≈ 0.93

There is also 55
59

= 55
29+30

where many numbers appear from our sums. 27, 29,
30, 55 are numbers we got from the Karanovo table.

The Saros cycle of the eclipses, the time until the full moon again stands
before exactly the same fixed star, is about 18.03 years = 223 synodic months
(lunations) = 6585.159 days ≈ 241 (more precisely: 241.023377) sidereal
months.

223

241
= 0.925311203 ≈ 0.93

Difference between the two monthly numbers: 241 − 223 = 18, which corre-
sponds to the cycle duration in years.

The 6585 days of the Saros cycle correspond to about 227 ∗ 29 = 6583 ≈
244 ∗ 27 = 6588.

The difference is
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6588 − 6583 = 5 days

227

244
= 0.930327868... ≈ 0.93

and
244 − 227 = 17

another number from our fundus!

In antiquity, the Tri-Eteris was used as a subcycle of the saros cycle
to synchronize three seasons and lunar years in synodic and sidereal lunar
months:

3 · 365 = 1095 ≈ 1092 = 40 · 27.3 ≈ 37 · 29.5

With the numbers from the Karanovo table:

36 · 30 + 17 = 1097 ≈ 1095 days of Tri-Eteris

1097 · 6 = 6582 ≈ 6585 days of the Saros cycle

6585 − 6582 = 5 days difference

We can still calculate further:

56 = 55 + 1 = 27 + 29

29 · 55 = 1595

(17 + 36) · 30 = 1590

1595 − 1590 = 5 days surplus of Tri-Eteris (as above: 1097-1092)

and

(1595 + 17) · 4 = 6448 = 17 + 29 + 55 + 36 = 137 = 167− 30 = (82 + 85)− 30

One solar year lasts (rounded) 365 days. One lunar year 12 · 29.5 days =
354 days. The difference is 11 days. With [3] we ask: ”How long do you have
to wait for the lunar year to start again in the same month? To solve this
question, one has to calculate how often 11 days difference to fill a lunar year
of 354 days. This is 32 solar years, each with 11 days difference, because 32
· 11 = 352. After 32 solar years you have 352 days offset, which corresponds

12



to almost a lunar year. The mistake is only 2 days. In other words, 32 solar
years equals 33 lunar years. ”

32

33
= 0.96969696... ≈ 0.97

This year’s expectation can be found on the Sky Disc of Nebra.

Again we find

82
85

= 0.964705882..., very roughly rounded 0.97.

82 · 365.25 = 29950.5, 85 · 29.5 ∗ 12 = 30090 which corresponds to approx.
822 years, with only 140 days errors. So, these figures could possibly reflect
the annual expectation of the Karanovo table.

Then we still find

6585 − 6448 = 137 ≈ 140, what a coincidence!

Now it can be argued that such number games do not prove anything,
since one can, depending on the permitted inaccuracy, calculate any number.
That is perfectly right and thus the conclusions are also to be considered with
the necessary skepticism. We could also calculate π or e or h with the given
numbers with the appropriate effort ... [You do not believe that? Look into
the appendix!]

However, the conclusion to be suggested is that the Karanovo table could
indeed be a Lunar solar calendar that implicitly includes cyclical events such
as lunar eclipses, years, synodic and sidereal lunar cycles, and possibly even
the saros cycle. Even if this assumption is true, we can not say anything
about the real use of the table.

Unfortunately, the author is not so much concerned with astronomy or
even palaeo astronomy that the numbers could give him more clues. That
would be a task for the relevant professionals.

Further numerical calculation gives the following tables:
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Component-wise addition:: a,b -> a+b

Row \ Column A C E Row total

1 0 4 2 6

2 2 3 3 8

3 2 14 3 19

4 2 6 3 11

5 2 6 12 20

6 2 10 10 22

7 2 15 12 29

8 2 13 9 24

9 0 0 7 7

10 3 13 5 21

Column sum 17 84 66 167 = 82+85 = 2x83.5

Component-wise multiplication: a,b -> a*b

Row \ Column A C E Row total

1 0 0 0 0

2 0 0 0 0

3 0 40 0 40

4 0 9 0 9

5 0 9 32 41

6 0 21 24 45

7 0 36 32 68

8 0 30 20 50

9 0 0 12 12

10 0 30 0 30

Column sum 0 175 120 295
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Component subtraction: a,b -> a-b

Row \ Column A C E Row total

1 0 4 2 6

2 2 3 3 8

3 2 -6 3 -1

4 2 0 3 5

5 2 0 -4 -2

6 2 -4 -2 -4

7 2 -9 -4 -11

8 2 -7 -1 -6

9 0 0 1 1

10 3 -7 5 1

Column sum 17 -26 6 -3

7 Appendix

What else is hidden in the numbers of the Karanovo calendar? Take, for
example, The following four numbers that we found when counting the Kara-
novo calendar:

• A = 27

• B = 29

• C = 30

• D = 55

The calculation
B2D2

C4
= 3.141

is approaching π with the amazing accuracy of an error below 0.001 !

The calculation

A3 ·D2

B3 · C2
= 2.713 ≈ e = 2.718
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provides a good approximation to Euler’s number with an absolute error of
only 0.005 .

Then we still have the Planck effect quantum h = 6.626 · 10−34. What
do we find when we do the following?

B ·D3

A · C3
= 6.618

Planck’s effect quantum, better than Max Planck himself determined it at
the beginning! (I simply omitted the powers of ten for the sake of simplicity
...)

So did the old Europeans already have such a good knowledge of mathe-
matics and quantum physics?

Answer: No, of course not, these number games are completely meaning-
less! It is easily possible to arbitrarily approximate any number with any
other numbers. Only the formula effort increases [4].
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Archäologie in Sachsen-Anhalt 4/2006
(2007) S.289-304

[4] Gero von Randow (Hrsg.),
Mein paranormales Fahrrad und andere Anlässe zur
Skepsis, entdeckt im ”Skeptical Inquirer.
Rowohlt,
Reinbek bei Hamburg 1993

17


