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Abstract

This document deals with mathematical knots and links. It stan-
dardizes knot graphs instead of utilizing the usual knot diagrams. Op-
erations are defined to recognize equivalent knot graphs. Furthermore,
operations are defined to generate knot graphs with higher number of
crossings from graphs with lower number of crossings. Methods are de-
scribed to reduce knot graphs to graphs with lower number of crossings
to distinguish between graphs of knots and links. These methods and
operations establish order relations and equivalence relations on the
set of knot graphs. It turns out that the set of knot graphs is divided
into two disjunct subsets of graphs representing knots or links, respec-
tively, but the order structure includes both subsets. One equivalence
relation parts the set of graphs representing knots, dividing them into
classes of prime knots. The reduction method creates another equiva-
lence relation on the whole set of knot graphs which represent knots.
It seems that this relation has only two classes: One is represented
by the trifoil knot the other by the figure eight knot. This document
includes tables of knot and link graphs up to seven crossings and some
graphs with higher crossing numbers. This work imposes struktures
and classifications on the set of knot graphs but addresses also further
problems. The main problem is the use of ambivalent knot graphs
instead of knot diagrams. Therefore a lot of open questions remain.

A final remark: This work is pure mathematics and does not search
for new utility knots or practical applications - even if the author as
a sailor and mariner would be highly interested in such matters.

Knot or Link?
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1 Introduction

Knots belong to the craft of every sailor. But the goal of this document is
pure mathematical: How can knots be distinguished from links? Does the
set of knots show mathematical structures or can knots be classified? To
approach these questions standardized knot graphs and a related formal ter-
minology and nomenclature are defined instead of the usual knot diagrams.
Classical graph theory is of little help because e.g. in a prime knot no cross-
ing is connected to itself, therefore the adjacent matrix of the related knot
graph has the main diagonal occupied with zeroes and the number of edges
connected with a node is always four.

In this document operations are desribed that allow to recognize equiv-
alent knot graphs. Furthermore, operations are defined to generate knot
graphs with higher number of crossings from graphs with lower number of
crossings. A reduction method is introduced which allows to distinguish be-
tween knot graphs and link graphs. It turns out that these operations and
methods constitute an order relation and equivalence relations on the set of
knot graphs that allow to structurize the set of knot graphs. Some theorems
and conjectures are formulated. But the main problem is the use of ambiva-
lent knot graphs instead of knot diagrams. Therefore a lot of open questions
remain.

Because some of the image headlines contain not translated German text,
here a glossary for the easier understanding is added.
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2 Glossary

German English
Achtknoten Figure Eight Knot

Anzahl Number
aktuell actual

aus from
Austörnen Turning, twisting

durch by
Erweiterung Extension, Expansion
Klappung Wrapping

Kleeblattknoten Trefoil Knot
Knoten Knot

Kreuzung Crossing, intersection
längs along

nichtprim non-prime
Nullknoten Unknot

Palstek Bowline Hitch
Potenz Power
prim prime
quer across

Quotient Quotient
Reduktion Reduction
reduzierbar reducable
Rotation Rotation
Schotstek Sheet Bend
Streckung Streching
Teilung Splitting
Törnen Turning, twisting

Trendlinie Trend line
Türkischer Bund Turks Head Knot

Überhandknoten Overhand Knot
und and

Ursprung Origin
Verdrehen Twisting
Verhältnis Relation

Verschiebung Shift
Verschlingung Link
Webeleinstek Clove Hitch

Wuling Tangle
Zweieck Bi-angle
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3 Knot Diagrams and Knot Graphs

Knot graphs (also called ”Knot Shadows”) are used instead of the usual, flat
knot diagrams:

The Figure-Eight-knot as a knot diagram:

Because all knot diagrams represent closed space curves, knot graphs can
always be drawn in a circle. Crossings are represented by points:

The Figure-Eight-knot as a knot graph:

There are ambiguities of knot graphs, which are secondary by now, be-
cause we deal primarily with the distinction of knots and links by means
of knot graphs and also the recognition of the same knot in different knot
graphs.

Bowline Hitch and Sheet Bend variants ...

... are projected onto one single knot graph:
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3.1 Definitions

The following expressions are used to designate the parts of the knot graph:

Definition: Strand instead of the graph-theoretical ”edge”:

Definition: Crossing or Intersection instead of the graph-theoretical
”vertex”:

Exactly four strands depart from every intersection (crossing). However,
no crossing is connected by a strand to itself, since by simple turning the
strand such a crossing can be deleted.

Due to the ambiguity of the crossings in the knot graph even so knot
graphs are ambiguous. A crossing in the knot graph can be shown in two
ways:

So or so but never so

Each knot graph can be transformed into a knot diagram, if the strands
are followed in one direction and at each intersection alternating leading over
or under the opposite strand. For some knots, there are however no alter-
nating solutions, e.g. K8.19 .

Definition: A Bi-Angle arises if two crossings have two joint strands:
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Definition: A tangle is neither a knot nor a link, but can be disentan-
gled into the unknot. It is so to speak a two-dimensional knotting of the
trivial or unknot, whereas a real knot is always knotted in three dimensions.

The corresponding knot graph can however be drawn into the diagram of
a real knot with higher number of crossing because of its ambiguity.

Example:

Tangle:

The knot graph of a tangle:

Knot made from the knot graph of a tangle:
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3.2 Observations

• Knot graphs have the advantage that structures and similarities are
easier to discover than in the somewhat chaotic knot diagrams.

• Knot graphs are planar graphs. That means that no strand is crossing
another strand. Strands only connect crossing points.

• Different knots may be projected onto the same knot graphs as there
the directions of the crossings are not included (example: knot 8.17,
8.19). This is however not decisive for the problem since it is only to
distinguish knots from links.

• A knot graph has only crossings of the even degree 4 because from
any crossing exactly four strands depart (strictly speaking a crossing is
formed by two strands going on top of each other).

• There is only one trail of crossing strands in the knot graph if a knot
is represented.

• Even if the knot graph looks coherent and its crossings have even degree
it can be closed unicursal or closed multicursal. In the second case, the
knot graph depcits a link.

• Definition: Degree of a link: number of closed loops that form the
link.

Link of degree 3:

• A knot is so to speak a link of the 1st degree.

Knot no. 7.6:

10



4 Operations

Here is described how by three extension operations from a given knot graph
new knot graphs can be generated with an increased number of crossings.
This can be both, graphs of knots as well as graphs of links. Furthermore,
by the means of equivalence operations can be detected which graphs repre-
sent the same knot or same link.

With the operations described in this chapter it is not yet possible to
distinguish between knots and links.

Starting point of all extensions is the Unknot a knot without intersec-
tions:

A (reducable) knots with one intersection is created by Turning the
strand of the unknot:

=

This knot can be produced also by means of the splitting rule (see below
chap. 4.1.3).

4.1 Extensions

To create new knot graphs with higher number of crossings, a crossing can
be expanded in two ways into bi-angles: A crossing can be split into a bi-
angle either ”along” or ”across”. The third way of expansion is to insert new
crossings into strands. The generated knot graph may represent a knot or a
link, regardless of whether the predecessor was a knot or a link.

11



4.1.1 ”Along”

−→

Example:

=

Hereby the figure eight knot becomes a link of second degree.

4.1.2 ”Across”

−→

Example:

= =

This expands the figure eight knot K4.1 into the knot K5.2 of the con-
ventional knot tables.
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4.1.3 ”Splitting”

The strands of a knot graph can be ”split” according to following rules with
new crossing points and the knot graph then be extended:

1. ”Split” of a strand by inserting a new crossing point.

2. Each existing strand can be splitted only once. It can be inserted
exactly one crossing per strand.

3. The new crossings have to be connected by new strands so that...

3.1. ... all crossings are connected by exactly four strands and...

3.2. ... no new strand crosses existing strands (which would violate rule
2).

4. So many as desired of the maximum possible new crossings can be
inserted.

5. Only non-reducable knots may be split, except for the knot K1.1.!

Example:

All splittings of the overhand knot

By these rules also knot graphs without bi-angles such as e.g. V6.0 can
be generated.
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4.2 Equivalence Operations

Equivalence operations leave a knot unchanged but transform the knot graph
into another equivalent one. In particular, it retains the number of crossings.
These operations are based on the possibilities how real knots can be de-
formed (see chapter 8.7).

4.2.1 Rotation

Rotate the entire knot graph about a fixed but arbitrary angle, for example:

4.2.2 Shift

Shift crossing points along strands, for example:

4.2.3 Scaling

Scaling (streching or shortening) of strands, e.g.:
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4.2.4 Wrapping

Wrap a strand at the edge of the knot graph abround the entire graph, for
example:

4.2.5 Mirroring

Mirror the entire knot graph, for example:

4.2.6 Twisting

Twist strands of the knot (and therefore its knot graph) while retaining the
crossing number and the running directions of the strands:

=

The most important equivalence operations are wrapping and twisting.
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5 Detecting Links

There are two methods for detecting links in knot graphs:

1. Special patterns that serve as criteria for links.

2. Detection of the features mentioned in 1) after reducing the number of
crossings without changing the running direction of the strands. I.e.
simplification of the knot graph without surrender of essential proper-
ties while it is reduced to known graphs of knots or links.

All knot graph which represent no links are knots, except for equivalence.

5.1 Characteristics of Links

The first topological pattern is very easy to detect, if the graph is a closed
chain of bi-angles:

If the number of bi-angles in the closed chain is odd it represents a knot:

=
otherwise it represents a link:

=

5.2 Reduction Method

In the following sequences the strands have the same direction but fewer
intersections. Therefore, they are suitable for the reduction of knot graphs.
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5.2.1 Reduce Three Bi-Angles to One

A chain of three bi-angles can be reduced to a bi-angle, four crossings are
reduced to two:

or

5.2.2 Reduce Two Bi-Angles to One Crossing

Two bi-angles can be reduced into one crossing, three crossings are reduced
to one:

or

5.2.3 Resolution of Bi-Angles

A bi-angle can be dissolved to vanish:
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or

5.2.4 Twisting of a Bight

A bight (a crossing connected by one strand to itself) can be twisted to
vanish:

or

5.2.5 Reduction after Expansion

For knot graphs with no bi-angles, like for example the Turk Head Knot, its
own reduction rule is needed: By wrapping of a strand, temporarily more
crossings are generated, but also bi-angles are produced, which then can be
reduced.
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If knot graphs are reduced with the above rules to a smaller number of
crossing, possibly using equivalence operations, then it may be possible to
recognize topological patterns or the degree of links, or the reduction is pro-
gressing until an elementary knot with lower crossing number is recognized.

Because the direction and coherence of the strands in the knot are not
changed by the reduction, the topological properties of the finally reduced
knot can be transferred to the more complex knot.

5.2.6 Examples

Examples to illustrate the method:

Die Reduktion führt auf den Graphen der einfachsten Verschlingung

The reduction leads to the graph of the simplest link and thus also the
original graph represents a link.

The following reduction leads to the overhand knot, so that here the
original graph represents a knot:

= =
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The following example shows a more complex reduction with twisting and
shifting:

=

In the last graph the topological pattern of a link is recognizeable in the
right half:

The reduction leads to a link of 2nd degree. Therefore, the original graph
is also a link of 2nd degree.

The Turk Head Knot (knot K8. 18) is reduced to the overhand knot:
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And as another example of the reduction by extension it is shown that
the knot K9. 40 reduces to the figure eight knot:

The overhand knot is reduced directly to the unknot:

The figure eight knot reduces also directly on the unknot:
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6 Try of a Nomenclature

The model of this nomenclature for knot graphs is the nomenclature, used
for the description of complex organic chemical compounds.

Because knot graphs consist of much fewer items, compared to chemical
elements (only three: crossings, strands, bi-angles) and the number of con-
nections is manageable (exactly four strands leave each crossing), therefore it
should easily be possible to find simple, structure-descriptive nomenclature
rules which can be translated into a knot graph and vice versa.

The rules of the nomenclature should firstly describe the structure of the
knot graph, and it should easily be possible formally to perform transforma-
tions and operations. If then the structural formula even allows to identify
topological patterns, the set of rules is perfect. Possibly algebraic structures
(groups, rings, etc.) or other properties can be identified and derived.

6.1 Elements

If a knot graph should be translated into a structural formula, first the
strands are numbered randomly. Crossings are denoted by K and bi-angles
with Z.

Knot graph with numbered strands:

This knot graph contains two bi-angles where two strands come from each
of their two corners. The description of one of the bi-angles looks like this:

1 2 Z 3 4
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and of the other:

1 4 Z 2 3

But a bi-angle can also be represented by two crossings, connected by two
strands:

Alternative representation of a bi-angle:

The knot graph now contains two crossings K, one of which together with
its strands is described by

1 5 K 6 4
the other by

2 3 K 5 6

Because the numbering of the strands is arbitrary and no orientation in
crossings is given, there are several variants how a crossing can be described:
a b K c d
b a K c d
a b K d c
b a K d c
a c K b d
c a K b d
a c K d b
etc.
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The description of the knot graph is an arbitrary sequence of the descrip-
tions of the crossings and bi-angles and their strands and therefore can be
written as follows:

1 5 K 4 6 2 3 K 5 6 1 2 Z 3 4 = 1 4 Z 2 3 1 2 Z 3 4

The description can easily and uniquely (except for equivalence) be re-
translated in a knot graph.

6.2 Operations

The extension of an intersection into an ”along” bi-angle looks as follows in
the structural description:

a b K c d → a b Z c d.

The extension of an ”across” crossing into a bi-angle has the following
structural description:

a b K c d → a c Z b d.

With bi-angles, there are only the following description variants

a b Z...

b a Z...

and at the other end similar.

bi-angle chains are represented by ZZ... .

There are numerous descriptions of knot graph, however, all uniquely
describe the structure.
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6.3 Examples

Original link:

1 2 Z 3 4 2 3 Z 5 6 4 5 Z 1 6

This link consists of

1. a bi-angle to which connect on one side the strands 1 and 2 and to the
other the strands and 3 and 4 (1 2 Z 3 4),

2. a bi-angle to which connect on one side the strands 2 and 3 and to the
other the strands and 5 and 6 (2 3 Z 5 6) and

3. a bi-angle to which connect on one side the strands 4 and 5, and to the
other the strands 1 and 6 (4 5 Z 1 6).
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Knot graph reconstruction
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7 Knot Graph Tables

The following tables, beginning with the unknot, list systematically all ex-
tensions up to a crossing number of seven. All occurring variants of a knot
graph or a link will be listed as a lookup table. In the next chapter the full
context of the knot graph will be given and conclusions will be derived.
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For the translation of the german words please see the glossary.
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8 Evaluation

8.1 Theorems

Different graphs of knots and links are related to each other by the present
two types of extensions. Every graph, except the unknot, should have at
least one predecessor and some successors.

Let K = {kn | n ∈ N} be the set of all knot graphs and kn a knot graph
with n crossings. Each intersection can be extended ”along” or ”across”.
Thus, there are usually a large number of immediate extensions of a knot
graph. Let, without restrictions, Er(kn) = kn+1 be the r.th extension of the
knot graph kn. Then kn+1 is called a (immediate) successor of kn , written
kn B kn+1.

Is the knot graph kn+x generated by a succession of x consecutive ex-
tensions of kn, so it is an (indirect) successor of kn. The so generalized
successor-relationship km I kn (read: ”from km follows kn”) is a relation
I ⊂ K × K on the set of the knot Graphs. (Successor-Relation). This
relation is transitive, because if ki I kj and kj I kl then the combination of
the sequences of extensions generates the successor relationship ki I kl.

Because an extension always results in a knot graph with a higher number
of crossings kn I kn+x, so for kn never a sequence of extensions exists that
kn+x I kn would apply. The successor relation is therefore asymmetrically.

Thus:

Theorem 1: The successor relation is an order relation. �

On the set of knot Graphs, therefore an order structure can be defined
(See Chapter 8.3).

The reductions to distinguish knots from links form a different kind of
relation. We can classify the set of the knot graphs into disjoint subsets, if
the last step of the reduction of each knot into the unknot is excluded.

If we introduce the identical reduction (which leaves everything unchanged)
and define the inverted reductions as structure-preserving extensions, then,
sequences of reductions are reflexive, transitive, and symmetric and it follows:

39



Theorem 2: Sequences of reductions are equivalence relations between
knot graphs of different number of crossing. �

Still there are the previously defined equivalence operations for transform-
ing a knot graph into another with same number of crossings. If the operation
which leaves everything unchanged is introduced as identical equivalence op-
eration, then sequences of this equivalence operations are reflexive, transitive,
and symmetrical. We have therefore:

Theorem 3: Sequences of equivalence operations are equivalence rela-
tions between knot graphs of the same intersection number. �

Theorem 4: With the exception of the unknot is the number of strands
in a knot graph twice the number of crossings, as an intersection is formed
by two strands. �

Probably, these theorems allow more statements about the connection of
the relations, infima, maximum and minimum elements, etc. They may con-
tribute to the classification and ultimately to the calculation of knot graphs
or finally knots.

8.2 Knot Graph Genealogy

Here follows the list of derivations of the knot graphs, their family relation-
ships, so to speak:

K0.1 is (reducibly) splitted into K1.1

K1.1 splits into K3.1 and expands to K2.1 (reducible), V2.1

V2.1 expands to K3.1

K3.1 is splitted into K5.1, K5.2, K7.6, K7.7, V6.0, V7.0, V7.1, V7.2 and
expands to K4.1, V4.1

K4.1 is splitted into K6.3, V6.2, V7.0 and expands to K5.2, V5.1
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V4.1 is splitted into K6.1, K6.2, K8.18, K9.40, V6.3, V7.0 and expands to
K5.1, K5.2

K5.1 is splitted into K7.2, V7.3, V7.4 and expands to K6.1, V6.1

K5.2 is splitted into K7.5, K7.6, V7.5, V7.6 and expands to K6.1, K6.2,
V6.2, V6.3

V5.1 is splitted into K7.6, K7.7, V7.0, V7.2, V7.5 and expands to K6.2,
K6.3, V6.2, V6.3, V6.4

K6.1 expands to K7.2, K7.3, V7.1, V7.3, V7.6

K6.2 expands to K7.3, K7.4, K7.5, K7.6, V7.3, V7.4, V7.5

K6.3 expands to K7.6, K7.7, V7.5

V6.0 expands to V7.0

V6.1 expands to K7.3, K7.5, V7.4

V6.2 expands to K7.5, K7.6, V7.2, V7.6

V6.3 expands to V7.4, V7.5

V6.4 expands to K7.1, K7.2
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8.3 Order Structure

The order relation, defined accordingly to Theorem 1), causes the following
order structure on the set of knot graphs:
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8.4 Equivalence Classes of the Reduction

The equivalence relation according to theorem 2) defined between knot graph
classifies the set of the knot graphs of different numbers of crossings into
equivalence classes.

Ultimately, all prime knots are reduced to the unknot.

However, there exists no reduction of the figure eight knot with four in-
tersections into the overhand knot with three crossings, but only the direct
reduction into the unknot.

If we omit the last reduction into the unknot, we can reduce all knot
graphs either into the figure eight knot or into the overhand knot and, thus,
into only two equivalence classes.

One class is represented by the overhand knot:

Overhand Knot

and the other class is represented by the figure eight knot:

Figure Eight Knot
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Remark: Boatswain Stempel of the Sailor School Hamburg Finken-
werder taught us wimps, that all utility knots had been developed out of
the overhand knot or the figure eight knot.

Boatswain Stempel 1977

He was obviously right. So far, there is at least no known counterexample
(see Conjecture 3).

8.5 Canonical Map: Equivalence Class Membership of
the Knot Graphs

K3.1 is the overhand knot

K4.1 is the figure eight knot

K5.1 reduces to the overhand knot

K5.2 reduces to the overhand knot

K6.1 reduces to the figure eight knot

K6.2 reduces to the figure eight knot

K6.3 reduces to the overhand knot

K7.1 reduces to the overhand knot
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K7.2 reduces to the overhand knot

K7.3 reduces to the overhand knot

K7.4 reduces to the overhand knot

K7.5 reduces to the overhand knot

K7.6 reduces to the overhand knot

K7.7 reduces to the figure eight knot

K8.1 reduces to the figure eight knot

K8.2 reduces to the figure eight knot

K8.3 reduces to the figure eight knot

K8.4 reduces to the figure eight knot

K8.5 reduces to the figure eight knot

K8.6 reduces to the figure eight knot

K8.7 reduces to the overhand knot

K8.8 reduces to the overhand knot

K8.9 reduces to the figure eight knot

K8.10 reduces to the overhand knot

K8.11 reduces to the figure eight knot

K8.12 reduces to the figure eight knot

K8.13 reduces to the overhand knot

K8.14 reduces to the figure eight knot
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K8.15 reduces to the overhand knot

K8.16 reduces to the overhand knot

K8.17 reduces to the figure eight knot

K8.18 reduces the overhand knot

K8.19 reduces to the overhand knot

K8.20 reduces to the overhand knot

K8.21 reduces to the overhand knot

K9.1 reduces to the overhand knot

K9.2 reduces to the overhand knot

K9.3 reduces to the overhand knot

K9.4 reduces to the overhand knot

K9.5 reduces to the overhand knot

K9.6 reduces to the overhand knot

K9.7 reduces to the overhand knot

K9.8 reduces to the overhand knot

K9.9 reduces to the overhand knot

K9.10 reduces to the overhand knot

K9.11 reduces to the overhand knot

K9.12 reduces to the overhand knot

K9.13 reduces to the overhand knot

K9.14 reduces to the figure eight knot
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K9.15 reduces to the overhand knot

K9.16 reduces to the overhand knot

K9.17 reduces to the figure eight knot

K9.18 reduces the overhand knot

K9.19 reduces to the figure eight knot

K9.20 reduces to the overhand knot

K9.21 reduces to the overhand knot

K9.22 reduces to the figure eight knot

K9.23 reduces to the overhand knot

K9.24 reduces to the overhand knot

K9.25 reduces to the overhand knot

K9.26 reduces to the figure eight knot

K9.27 reduces to the figure eight knot

K9.28 reduces to the overhand knot

K9.29 reduces to the overhand knot

K9.30 reduces to the figure eight knot

K9.31 reduces to the overhand knot

K9.32 reduces to the figure eight knot

K9.33 reduces to the figure eight knot

K9.34 reduces to the figure eight knot
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K9.35 reduces to the overhand knot

K9.36 reduces to the figure eight knot

K9.37 reduces to the figure eight knot

K9.38 reduces to the overhand knot

K9.39 reduces to the figure eight knot

K9.40 reduces to the figure eight knot

K9.40 reduces to the figure eight knot

K9.41 reduces to the figure eight knot

K9.42 reduces to the figure eight knot

K9.44 reduces to the overhand knot

K9.45 reduces to the figure eight knot

K9.46 reduces to the overhand knot

K9.47 reduces to the figure eight knot

K9.48 reduces to the figure eight knot

K9.49 reduces to the figure eight knot

K10.1, Perko 1, reduces to the overhand knot

K10.2, Perko 2, reduces to the figure eight knot
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8.6 Degree of the Link Graphs

Links can be classified after reduction according to their degree.

V2.1 is of degree 2

V3.1 is of degree 2

V4.0 is of degree 3

V4.1 is of degree 2

V5.1 is of degree 2

V6.0 is of degree 3

V6.1 is of degree 2

V6.2 is of degree 2

V6.3 is of degree 3

V6.4 is of degree 2

V7.0 is of degree 2

V7.1 is of degree 2

V7.2 is of degree 3

V7.3 is of degree 2

V7.4 is of degree 2

V7.5 is of degree 2

V7.6 is of degree 2

The equivalence relation within the knot graphs of equal crossing number,
defined according to theorem 3) ensures the uniqueness of the knot graphs.
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8.7 Conjectures

Here are some obvious conjectures, but their proofs are not yet sought.

Conjecture 1: The order structure of the knot graphs under the succes-
sor relation is a partial order or lattice. �

Conjecture 2: A tangle is always non-alternating. �

Corollary: But not every non-alternating knot diagram is a tangle. �

Counter-examples: The knots K8.19, K8.20, K8.21, etc.:

Conjecture 3: All knot graphs of real knots can be reduced either to
the overhand knot or the figure eight knot. �

Conjecture 4: A knot graph with overlapping strands and an odd num-
ber of crossings is planar, if the sum of the number of overlappings, intersec-
tions and bi-angles is odd, otherwise it is non-planar. �

Conjecture 5: Most knots belong to the class of overhand knot. The
ratio of overhand knot reductions to figure eight knot reductions is so far
47
35

= 1.34. �
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Conjecture 6: For reductions to the figure eight knot compared to the
overhand knot the ratio converges against a fixed number in the range of 1. �

8.8 Further Questions

Further questions can be asked, e.g.:

• How can the ambiguities of the knot graphs be solved?

• Is the re-drawn knot graph of a tangle always only another knot, or
can it also be a tangle? Here another field for investigations is opened.

• Which knot graphs are elements of the equivalence classes of the re-
duction. What conclusions follow for the classification of the knots?

• Are the so far given equivalence operations sufficient to identify knot
graphs with the same number of crossings? Is this also true for the infi-
nite number of knot graphs or will it be always neccessary to formulate
new equivalence transformations to detect increasingly complex knot
graphs as equal?

• Could it happen that reducable knots arise while expanding knot graphs?
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• What is the maximum degree links have with given number of cross-
ings?

• How many bi-angles at maximum can a knot graph have at a given
number of crossings?

• As the overhand knot and the figure eight knot reduce directly to the
unknot, they could be described as fundamental knots. The question
arises whether there are more fundamental knots which reduce directly
to the unknot, without intermediate steps. Under the reviewed knots
with crossing numbers up to 10 there is no more fundamental knot -
remain infinitely more to check.

• Can the order and equivalence relations be found in the known knot
invariants (such as the Jones - or Conway polynomials)?

8.9 Development of the Methods

The expansion operations of an intersection in a bi-angle, ”across” or ”along”,
were not sufficient to generate all knot graphs. The translation into conven-
tional knot diagrams with equal crossing number was managed easily so far,
but it lacked at least one rule because there were knots such as the turks
head knot that could not be created.

Sometimes the wording of a rule succeeded only by recourse to the ”se-
mantics” of the knot graph, therefore, the corresponding appropriate knot
diagrams, and playing around with the appropriate knot. I used occasionally
real ropes to see more clearly.

The splitting rule was introduced to be able to create the turks head knot
and similar knots. Also the reduction after expansion, to be able to reduce
bi-angle free knot graphs.

Here are some examples of original worksheets that inspired the presented
Ideas:
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For example, the rule of for twisting had to be introduced to identify the
knot graph K7.6.7 as equivalent to other knots of the class K7.6:

Original drawing to the twisting rule
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Original drawing to the ”reduction by expansion” rule
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Example of derivations: Splitting the overhand knot
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The beginning was the presumption, that the knot graphs could be sorted
into an order-structure graph, that looks about as shown in the following im-
age.

The hope was that alone from the position in the order-structure table it
could be determined whether it is a knot or a link. This turned eventually
out not to be true:

Original drawing for the order-structure graph
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8.10 Problems

Beside the tasks further mentioned in the questions there are still open issues
which should be resolved. In addition to the question of whether the material
collection is correct as it is now, the question is, whether the definitions of
relations and the resulting theorems are mathematically correct.

8.11 Correctness of Theorems

The definitions, relations, and theorems have to be reviewed for correctness
and accuracy of the proofs. This should be done by mathematicians.

8.12 Accuracy

The check the completeness and accuracy of the knot graphs which repre-
sent the prime knots one can easily use the knot diagrams published in the
literature. It is more difficult in the case of the links, for there are no com-
parable tables published. Here both, the question of completeness as well as
the problem of not yet discovered identities still remains. I tried all efforts
to ensure the accuracy, but (still) can not guarantee it.

57



9 Exercises

1. Create the knot graph described by
1 2 K 7 8 7 3 K 9 10 9 8 Z 10 6 2 3 K 4 5 4 6 Z 1 5

2. Show the equivalence of the knot graphs K7.6.1 and K7.6.7

3. Reduce the knot graph K7.5 2 to the unknot. Does the reduction lead
via the figure eight knot or via the overhand knot?

4. Create a knot graph with seven crossings from the knot graph K6.2.2
by extending one single crossing.

5. Is this the graph of a knot or of a link?

6. Reduce the knot graph V6.0.
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