Calculation of the Speed of Sound

Wolf Scheuermann, November 1998.

Hook's law is applicable for elastic material with linear response to an external force, like springs:
Forces are proportional to the change of length.
A gas can be described as a spring (- and used: e.g. pneumatic cushioning in trucks).
Imagine a pipe with cross section A filled with a gas of density $\rho_{\mathbf{0}}$. A volume element of length dx is set under a force dF in longitudinal direction x of the pipe. The length of the volume element changes with the force by the amount $\mathrm{d} \xi$. A pressure dp acting in opposite direction of the force will be felt.

Figure 1. A Volume Element of a Gas under Pressure.

Eq. 1)

$$
\mathrm{d} p=-\frac{\mathrm{d} F}{A}
$$

According to Newton:
Force $=$ Mass \cdot Acceleration
$F=M \cdot a \quad$ with $\quad a=\frac{\mathrm{d}^{2} \xi}{\mathrm{~d} t^{2}}$
$\rightarrow \mathrm{d} F=-A \cdot \mathrm{~d} p=\mathrm{d} M \cdot a=\rho_{0} \mathrm{~d} V \cdot a=\rho_{0} A \mathrm{~d} x \cdot \frac{\mathrm{~d}^{2} \xi}{\mathrm{~d} t^{2}}$
$\rightarrow \quad-A \mathrm{~d} p=\rho_{0} A \mathrm{~d} x \cdot \frac{\mathrm{~d}^{2} \xi}{\mathrm{~d} t^{2}} \rightarrow$

Eq. 2)

$$
\frac{\mathrm{d} p}{\mathrm{~d} x}=-\rho_{0} \cdot \frac{\mathrm{~d}^{2} \xi}{\mathrm{~d} t^{2}}
$$

On the other hand the pressure can be described using the change of length of the volume element:

$$
\mathrm{d} p \sim-\frac{\mathrm{d} \xi}{\mathrm{~d} x}
$$

The proportional action factor is the modulus of elasticity E. For gases, the modulus of compression [same unit like pressure] is used.

We get

Eq. 3)

$$
\mathrm{d} p=-E \cdot \frac{\mathrm{~d} \xi}{\mathrm{~d} x}
$$

Derivation with respect to x delivers the result:

Eq. 4)

$$
\begin{aligned}
& \frac{\mathrm{d} p}{\mathrm{~d} x}=-E \cdot \frac{\mathrm{~d}^{2} \xi}{\mathrm{~d} x^{2}} \\
& \rightarrow \quad-\rho_{0} \cdot \frac{\mathrm{~d}^{2} \xi}{\mathrm{~d} t^{2}}=-E \cdot \frac{\mathrm{~d}^{2} \xi}{\mathrm{~d} x^{2}}
\end{aligned}
$$

This is indeed a special form of the wave equation

$$
\frac{\mathrm{d}^{2} \xi}{\mathrm{~d} t^{2}}+c^{2} \cdot \frac{\mathrm{~d}^{2} \xi}{\mathrm{~d} x^{2}}=0
$$

where \mathbf{c} is the wave propagation speed.
With Eq. 2, 4

$$
\begin{aligned}
& \rightarrow \quad \frac{\mathrm{d} x^{2}}{\mathrm{~d} t^{2}}=\frac{E}{\rho_{0}} \cdot \frac{\mathrm{~d}^{2} \xi}{\mathrm{~d}^{2} \xi} \\
& \downarrow \\
& c^{2}=\frac{E}{\rho_{0}} \cdot \stackrel{\downarrow}{1} \quad \rightarrow \quad c^{2}=\frac{E}{\rho_{0}} \quad \rightarrow
\end{aligned}
$$

Speed of Sound

Eq. 5)

$$
c=\sqrt{\frac{E}{\rho_{0}}}
$$

Because sound can be described as a pressure wave as well as a density wave, the change of the density of the material is also determined by the change of length:

Eq. 6)

$$
\mathrm{d} \rho=-\rho_{0} \cdot \frac{\mathrm{~d} \xi}{\mathrm{~d} x}
$$

Expansion with c^{2}
$\rightarrow \quad c^{2} \cdot \mathrm{~d} \rho=-\rho_{0} \cdot c^{2} \cdot \frac{\mathrm{~d} \xi}{\mathrm{~d} x}$

With Eq. 5 and Eq. $3 \quad \rightarrow \quad c^{2} \cdot \mathrm{~d} \rho=-\rho_{0} \cdot \frac{E}{\rho_{0}} \cdot \frac{\mathrm{~d} \xi}{\mathrm{~d} x}=-E \cdot \frac{\mathrm{~d} \xi}{\mathrm{~d} x}=\mathrm{d} p \quad \rightarrow$

General Definition of the Speed of Sound in Elastic Material:

Eq. 7)

$$
c^{2}=\frac{\mathrm{d} p}{\mathrm{~d} \rho}
$$

Compression of gases (and sound is a phenomenon of compression) can be described as an adiabatic process, a process where no heat exchange occurs.

For adiabatic processes the following equation is valid:

Eq. 8) $\quad p=C \cdot \rho^{\gamma}$
γ : adiabatic exponent. For air (or diatomic gases: $\mathrm{N}_{2}+\mathrm{O}_{2}$):

$$
\gamma=1.4
$$

Derivation of Eq. 8 with respect to ρ and use of Eq. 7 and 5
$\rightarrow \quad \frac{\mathrm{d} p}{\mathrm{~d} \rho}=\gamma \cdot C \cdot \rho^{\gamma-1}=c^{2}=\frac{E}{\rho} \quad \rightarrow \quad E=\gamma \cdot C \cdot \rho^{\gamma} \quad \rightarrow$
with Eq. 8
Eq. 9)

$$
E=\gamma \cdot p
$$

With the equation of ideal gases
Eq. 10)

$$
p=\rho \cdot R \cdot T
$$

where R is the gas constant:

$$
R=287 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \text { for air }
$$

and Eq. 9 follows
$E=\gamma \cdot \rho \cdot R \cdot T$
with Eq. 5
$\rightarrow \quad c=\sqrt{\frac{\gamma \cdot \rho \cdot R \cdot T}{\rho}} \quad \rightarrow$

Speed of Sound in Air

Eq.11)

$$
c=\sqrt{\gamma \cdot R \cdot T}
$$

$\rightarrow \quad c=\sqrt{1.4 \cdot 287 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot T}=\sqrt{1.4 \cdot 287 \frac{\mathrm{Nm}}{\mathrm{kg} \cdot \mathrm{K}} \cdot T}=\sqrt{1.4 \cdot 287 \frac{\mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot T}=20.045 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \frac{1}{\sqrt{\mathrm{~K}}} \cdot \sqrt{T}$

This result may be used in a Rule of Thumb for calculation of the speed of sound in air:
Eq. 12)

$$
c \approx 20 \cdot \sqrt{T}
$$

T: OAT in Kelvin
c in $\frac{m}{S}$.

Note: The speed of sound in gases only depends on the temperature of the gas, not on the density. Example:
$T_{o}=288.15 \mathrm{~K} \quad \rightarrow \quad c=340.26 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\rightarrow \quad c=661.42 k t$

The rule of thumb delivers:
$c \approx 20 \cdot \sqrt{T_{0}}=20 \cdot \sqrt{288}=339 \quad \frac{\mathrm{~m}}{\mathrm{~s}}$
a quite good result.
This is valid for a great range of temperatures.

Literature

Alonso-Finn, Fundamental University Physics, Vol. II, Reading, Mass. 1967
Hans Breuer, dtv-Atlas Physik, Bd. 1, München 1987
Reinhard Kutter, Flugzeug-Aerodynamik, Stuttgart 1990^{2}

